Spline-based image-to-volume registration for three-dimensional electron microscopy.
نویسندگان
چکیده
This paper presents an algorithm based on a continuous framework for a posteriori angular and translational assignment in three-dimensional electron microscopy (3DEM) of single particles. Our algorithm can be used advantageously to refine the assignment of standard quantized-parameter methods by registering the images to a reference 3D particle model. We achieve the registration by employing a gradient-based iterative minimization of a least-squares measure of dissimilarity between an image and a projection of the volume in the Fourier transform (FT) domain. We compute the FT of the projection using the central-slice theorem (CST). To compute the gradient accurately, we take advantage of a cubic B-spline model of the data in the frequency domain. To improve the robustness of the algorithm, we weight the cost function in the FT domain and apply a "mixed" strategy for the assignment based on the minimum value of the cost function at registration for several different initializations. We validate our algorithm in a fully controlled simulation environment. We show that the mixed strategy improves the assignment accuracy; on our data, the quality of the angular and translational assignment was better than 2 voxel (i.e., 6.54 angstroms). We also test the performance of our algorithm on real EM data. We conclude that our algorithm outperforms a standard projection-matching refinement in terms of both consistency of 3D reconstructions and speed.
منابع مشابه
A Novel Subsampling Method for 3D Multimodality Medical Image Registration Based on Mutual Information
Mutual information (MI) is a widely used similarity metric for multimodality image registration. However, it involves an extremely high computational time especially when it is applied to volume images. Moreover, its robustness is affected by existence of local maxima. The multi-resolution pyramid approaches have been proposed to speed up the registration process and increase the accuracy of th...
متن کاملSpline Projection-based Volume-to-image Registration
This thesis focuses on the rigid-body registration of a three-dimensional model of an object to a set of its two-dimensional projections. The main contribution is the development of two registration algorithms that use a continuous model of the volume based on splines, either in the space domain or in the frequency domain. This allows for a well-defined gradient of the dissimilarity measure, wh...
متن کاملIndividual virtual phantom reconstruction for organ dosimetry based on standard available phantoms
Background: In nuclear medicine application often it is required to use computational methods for evaluation of organ absorbed dose. Monte Carlo simulation and phantoms have been used in many works before. The shape, size and volume in organs are varied, and this variation will produce error in dose calculation if no correction is applied. Materials and Methods: A computational framewo...
متن کاملAssembly of Large Three-Dimensional Volumes from Serial-Section Transmission Electron Microscopy
Serial-section transmission electron microscopy (TEM) is an important imaging modality for studying neuronal connectivity patterns. However, before serial-section TEM images can be used to reconstruct connectivities of neurons, several image registration problems must be addressed. The first problem arises due to the large sample size and limited field of view: each section must be assembled fr...
متن کاملMulti-modal registration for correlative microscopy using image analogies
Correlative microscopy is a methodology combining the functionality of light microscopy with the high resolution of electron microscopy and other microscopy technologies for the same biological specimen. In this paper, we propose an image registration method for correlative microscopy, which is challenging due to the distinct appearance of biological structures when imaged with different modali...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Ultramicroscopy
دوره 103 4 شماره
صفحات -
تاریخ انتشار 2005